
cookiecutter-bireli
Release 0.3.5

David Thenon

Jun 05, 2023

CONTENTS

1 Features 3

2 Dependencies 5

3 Links 7

4 Summary 9
4.1 Create a new project . 9

4.1.1 Options . 9
4.1.2 Result . 9

4.2 Project install . 10
4.2.1 System requirements . 10
4.2.2 Local deployment . 11
4.2.3 Initial data . 11
4.2.4 Upgrades . 12
4.2.5 Cleaning . 12
4.2.6 Production deployment . 12

4.3 Makefile . 12
4.3.1 Tasks . 12

4.4 Architecture . 14
4.4.1 Composition . 14
4.4.2 Structure . 15

4.5 Backend . 16
4.5.1 Backend base dependencies . 16
4.5.2 Database . 16
4.5.3 Settings . 16
4.5.4 Developing a new application . 19
4.5.5 Add a new third party application . 19
4.5.6 Environment Requirements . 19

4.6 Frontend . 20
4.6.1 Frontend base dependencies . 20

4.7 Development . 21
4.7.1 Install for development . 21

4.8 History . 22
4.8.1 Version 0.3.5 - 2023/04/28 . 22
4.8.2 Version 0.3.4 - 2023/03/28 . 22
4.8.3 Version 0.3.3 - 2023/02/06 . 23
4.8.4 Version 0.3.2 - 2023/01/30 . 23

i

ii

cookiecutter-bireli, Release 0.3.5

Bireli is a Django project template with Cookiecutter to produce a ready to start project.

It emphases on quality, modularity and modern stable stack.

Hint: This documentation is an ongoin work, not everything have been covered yet and it will continue to evolve.

CONTENTS 1

https://cookiecutter.readthedocs.io/en/stable/

cookiecutter-bireli, Release 0.3.5

2 CONTENTS

CHAPTER

ONE

FEATURES

• Development in a Python virtual environment with virtualenv and pip;

• Project include a pyproject.toml to store (almost) all backend tools configurations;

• Promote Test Driven Development with Pytest;

• Latest stable stack support;

• Frontend assets built with Node.js and managed with Webpack;

• Default shipped layout with Bootstrap5;

• Backend application architecture is modular through Project composer;

• Settings are managed with django-configurations;

• Internationalization and localization enabled;

• Include a set of main applications (CMS, blog, form builder, etc..) pre-configured;

• A Makefile with every useful commands.

3

https://virtualenv.pypa.io
https://pip.pypa.io
http://pytest.org
https://project-composer.readthedocs.io/en/latest/
https://django-configurations.readthedocs.io/en/stable/

cookiecutter-bireli, Release 0.3.5

4 Chapter 1. Features

CHAPTER

TWO

DEPENDENCIES

All involved dependencies

• Bireli: 0.3.5

• Bireli-newapp: 0.1.1

• Python: >=3.10

• Django: >=4.0,<4.1

• Project-composer: >=0.7.0,<0.8.0

• Django-configurations: >=2.3.2

• Node: >=18.0.0

• Npm: >=8.0.0

• Bootstrap: 5.2.0

• Webpack: ^5.50.0

Note: Bireli and Bireli-newapp are not involved in a project once it has been created.

5

cookiecutter-bireli, Release 0.3.5

6 Chapter 2. Dependencies

CHAPTER

THREE

LINKS

• Read the documentation on Read the docs;

• Clone it on its Github repository;

7

https://cookiecutter-bireli.readthedocs.io/
https://github.com/sveetch/cookiecutter-bireli

cookiecutter-bireli, Release 0.3.5

8 Chapter 3. Links

CHAPTER

FOUR

SUMMARY

4.1 Create a new project

Warning: You don’t need this just to use a Bireli project, this is only for developers that need to create some fresh
new projects.

To create a new project you just need to install Cookiecutter version >=2.1.0.

You may then use it from its repository URL:

cookiecutter https://github.com/sveetch/cookiecutter-bireli.git

Note: To speed up project creation you may install this cookie on your system, read Install for development to know
how.

4.1.1 Options

Once invoked, cookiecutter will prompt your for some informations about your project.

You may pre define some options in your cookiecutter user configuration to avoid to input them each time you use this
cookie.

4.1.2 Result

Cookiecutter will create a new directory named after your project name. You can enter into its directory and install it
locally with make install (see Project install for details).

9

https://cookiecutter.readthedocs.io/en/stable/
https://cookiecutter.readthedocs.io/en/stable/advanced/user_config.html

cookiecutter-bireli, Release 0.3.5

4.2 Project install

Note: This document is about default procedure for a freshly created project. Some projects may have been changed
by developers to involve less or more requirements, tasks and configurations.

Commonly a project should documentate everything for their specific needs but it is out of scope of Bireli documenta-
tion.

4.2.1 System requirements

A project will requires Python, pip, virtualenv, GNU make and a recent Node.js already installed and some system
packages for installing and running.

Lists below are the required basic development system packages and some other optional ones.

Basic requirements

Warning: Package names may differ depending your system.

• Git;

• Python >=3.10;

• python-dev;

• python-virtualenv;

• gettext;

• gcc;

• make;

• libjpeg;

• zlib;

• libfreetype;

Hint: If your system does not have the right Python version as the default one, you should use something like pyenv
to install it and then use pyenv local to set the correct project Python version to use.

On Linux distribution
You will install them from your common package manager like apt for Debian based distributions:

apt install python-dev python-virtualenv gettext gcc make libjpeg zlib libfreetype

On macOS
Recommended way is to use brew utility for system packages, some names can vary.

On Windows
Not supported, you probably can install some needed stuff but with some works on your own.

10 Chapter 4. Summary

http://www.pip-installer.org
http://www.virtualenv.org/
https://github.com/pyenv/pyenv

cookiecutter-bireli, Release 0.3.5

Optional requirements

These ones are common extra requirements that some projects may use. You don’t need to take care of them for now.

For Postgresql client driver (psycopg2)

• libpq;

For Mysql client driver

• libmysqlclient-dev;

For M2Crypto

• swig;

For Graphviz

• graphviz;

• libgraphviz-dev;

• graphviz-dev;

4.2.2 Local deployment

A created project can be installed using a simple Makefile task:

make install

Now you need to build the frontend assets:

make frontend

When finished your project is ready to run.

4.2.3 Initial data

A new installed project is empty from any content, however a task exists to create some initial data for main components:

make initial-data

This will creates a user with username admin and password ok.

If you don’t want any initial data, you will need at least a super user to reach the admin:

make superuser

4.2. Project install 11

cookiecutter-bireli, Release 0.3.5

4.2.4 Upgrades

Later if a project introduces a new package or newer packages versions, you may use the following commands to
upgrade your local install.

To upgrade backend install:

make install-backend

To upgrade frontend install:

make install-frontend

Warning: Don’t use the task install to upgrade your install, it has been made for a fresh new install and include
some other tasks that are longer to run and that could also lost some of your changes.

4.2.5 Cleaning

If you need to reset your local install you may use the following command:

make clean

However this will remove everything even your local data. If you just need to clean some parts of your install, see
Makefile help for all the specific cleaning tasks.

4.2.6 Production deployment

This is out of scope of Bireli because there is just too many ways to deploy a project, you will have to add this layer on
yourself into your project.

4.3 Makefile

A project contains a Makefile to achieve all the common tasks, use its help to know about every available task:

make help

4.3.1 Tasks

The following list is a summary of important tasks, use them like make TASKNAME.

requirements
To build base requirements file for enabled applications from composition manifest.

This is only to use when you change requirements files from repository application or when you change enabled
application from composer manifest.

install
To perform a new install with both backend and frontend.

install-backend
To install or upgrade backend requirements with Virtualenv and Pip.

12 Chapter 4. Summary

cookiecutter-bireli, Release 0.3.5

install-frontend
To install or upgrade frontend requirements with Npm.

freeze-dependencies
To write a frozen.txt file with installed dependencies versions

clean
To clean EVERYTHING (WARNING: you cannot recovery from this).

This use all the available clean tasks, see Makefile help to know about them.

check
To run all following check tasks in an accurate order to ensure debugging level.

check-composer
To run Composer checking on its configuration and display an helpful report.

check-django
To run Django System check framework. This is the most simple way to check about your project health but it
won’t go deeper like tests can do.

check-migrations
To check for pending application migrations. It does not write anything, just output all pending migration Django
found from your project.

This is useful when you are working on models since every tiny change can require a migration.

run
To run Django development server on your local network interface on port 8001.

By default you will be able to reach it with http://localhost:8001/.

migrate
To apply pending models migrations. This is to run when you have created new migrations or when you updated
your local install which can bring some model changes.

superuser
To quickly create a new superuser for Django admin from commandline. Obviously once you already have a
superuser you may use the Django admin to create new users.

initial-data
To load initial data for enabled applications. You should not run it twice on the same database.

new-app
To create a new project application properly structured and configured using template bireli-newapp;

css
To build CSS for development environnement, this means without any optimization.

watch-css
To launch watcher CSS for development environnement. On every Sass sources change a build will be performed
to update CSS.

js
To build distributed Javascript for development environnement.

watch-js
To launch watcher for Javascript sources for development environnement.

frontend
To build frontend assets from sources (CSS and JS) for development environnement.

4.3. Makefile 13

https://github.com/sveetch/cookiecutter-bireli-newapp

cookiecutter-bireli, Release 0.3.5

po
To update every PO files from composition apps, django apps and project code and templates for enabled lan-
guages.

This won’t create the locale directory for new enabled languages from settings, you must boot it yourself.

Saying to add French language, first you need to add ("fr", "French"), to settings.LANGUAGES. Then
after you will run a command like this:

.venv/bin/python manage.py makemessages --keep-pot --no-obsolete --locale fr

Never copy another language directory and rename it to your new locale name, it will miss some specific locale
options added by gettext (like plural formula).

mo
To build MO files from existing project PO files.

flake
To launch Flake8 checking on project backend code.

test
To launch project test suite using Pytest.

quality
To launch all quality tasks, any failure will stop its execution.

4.4 Architecture

4.4.1 Composition

Bireli strongly stands on Project composer to structure its main parts (settings, urls and requirements). You will need
to properly understand Project composer before to properly work on a project.

The Workflow document from Project composer documentation contains a diagram exemple of resumed workflow for
a Django project.

Details

The composer configuration lives in the pyproject.toml file in sections named tool.project_composer[.**].
Commonly you will only have to care about the option collection where is enabled all compose applications.

Note: Sections tool.project_composer[.**] assemble many options which assemble the composer configuration
and that is called the Manifest.

The collection is a list of module directory names from composition_repository/.

You rarely have to edit the environment settings from project/settings because their purpose is only to override
base settings for very specific environment needs.

All the Django builtins settings are located in the compose application django_builtins. And in the same idea,
each project application settings will be in their compose application.

14 Chapter 4. Summary

https://project-composer.readthedocs.io/en/latest/
https://project-composer.readthedocs.io/en/latest/
https://project-composer.readthedocs.io/en/latest/

cookiecutter-bireli, Release 0.3.5

4.4.2 Structure

Here below we will explain the default project structure, there is many more files and directories but for a better
explanation we will only focus on important parts.

.
composition_repository/

django_builtins/
sample_app/

django-apps/
project_utils/
sample_app/

frontend/
js/
scss/
package.json
webpack.config.js

Makefile
project/

settings/
static-sources/
templates/
urls.py

pyproject.toml
requirements/
tests/

composition_repository/
This is the directory which holds the applications configurations that will compose the project. These applications
are enabled or not from the collection list from pyproject.toml.

django-apps/
This is the directory which hold the applications code (models, view urls, views, etc..).

frontend/
Everything related to frontend assets is defined and built from there.

• Javascript sources are in js/;

• Sass sources are in scss/;

• Frontend requirements are defined in package.json;

• Asset management is configured in webpack.config.js;

project/
This holds the Django project configuration and built assets.

• settings/ store all the environment settings;

• static-sources will contains all built static to serve. It is not to mistake with static that is virtual
directory that is only used in production so don’t put anything there.

• templates/ store all the project and applications templates;

• urls.py mount all the applications urls modules;

requirements/
This holds all Environment Requirements.

4.4. Architecture 15

cookiecutter-bireli, Release 0.3.5

tests/
This is where to write all backend tests including project tests and all applications tests. No test in the applications
directories is allowed because we want to store them in the same place.

pyproject.toml
The project backend manifest contains the Project composer manifest, versionning and many development tool
configurations.

4.5 Backend

4.5.1 Backend base dependencies

• Python: >=3.10

• Django: >=4.0,<4.1

• Project-composer: >=0.7.0,<0.8.0

• Django-configurations: >=2.3.2

4.5.2 Database

A project is meant to work with different database drivers, at least PostgreSQL and SQlite. SQlite is used for develop-
ment and test environments. PostgreSQL is used in all other deployment, especially production.

4.5.3 Settings

Project settings are defined using the django-configurations way, it means within a class. There is no more monolithic
settings files.

There is two settings files kinds:

Application settings
Each application can have a settings file located in application module in composer repository. This is where
you will configure all application settings.

Environment settings
They are located in project/settings/ and their goal is to override some application settings to fit some
special environment requirements.

Local settings

A special environment settings can be used to add or override settings for your own local purpose only. This is useful
when you need to use some special things like debugging tools, database configuration, etc..

This settings file does not exists yet and you must create it to project/settings/localsettings.py.

Note: Alike all project settings files (from composer applications and environments), this local settings file has to be
done for the django-configurations way.

16 Chapter 4. Summary

https://django-configurations.readthedocs.io/en/stable/
https://django-configurations.readthedocs.io/en/stable/

cookiecutter-bireli, Release 0.3.5

Warning: This settings file must never be committed to the project repository since it is for your own local usage.

Basic

This example is only for basic apps which only need some settings to work.

Here we just enable django-extensions and disable cache. Its content should be something like:

from .development import Development

class LocalEnv(Development):
Disable every cache in local development
CACHES = {

"default": {
"BACKEND": "django.core.cache.backends.dummy.DummyCache",

}
}

@classmethod
def post_setup(cls):

super(LocalEnv, cls).post_setup()

cls.INSTALLED_APPS.extend([
"django_extensions",

])

There can only be a single class and it must be named LocalEnv and inherits from Development class.

Advanced

Sometime an application needs some settings and to add some urls. Let’s demonstrate it with configuration for both
django-extensions and django-debug-toolbar.

First the settings file:

from .development import Development

class LocalEnv(Development):
ROOT_URLCONF = "project.localurls"

INTERNAL_IPS = [
"localhost",

]

DEBUG_TOOLBAR_PANELS = [
#"debug_toolbar.panels.history.HistoryPanel",
"debug_toolbar.panels.versions.VersionsPanel",
"debug_toolbar.panels.timer.TimerPanel",
"debug_toolbar.panels.settings.SettingsPanel",

(continues on next page)

4.5. Backend 17

https://django-extensions.readthedocs.io/en/latest/
https://django-extensions.readthedocs.io/en/latest/
https://django-debug-toolbar.readthedocs.io/en/latest/

cookiecutter-bireli, Release 0.3.5

(continued from previous page)

"debug_toolbar.panels.headers.HeadersPanel",
"debug_toolbar.panels.request.RequestPanel",
"debug_toolbar.panels.sql.SQLPanel",
"debug_toolbar.panels.staticfiles.StaticFilesPanel",
"debug_toolbar.panels.templates.TemplatesPanel",
"debug_toolbar.panels.cache.CachePanel",
#"debug_toolbar.panels.signals.SignalsPanel",
#"debug_toolbar.panels.redirects.RedirectsPanel",
#"debug_toolbar.panels.profiling.ProfilingPanel",

]

Disable every cache in local development
CACHES = {

"default": {
"BACKEND": "django.core.cache.backends.dummy.DummyCache",

}
}

@classmethod
def setup(cls):

super(LocalEnv, cls).setup()

cls.MIDDLEWARE = [
"debug_toolbar.middleware.DebugToolbarMiddleware",

] + cls.MIDDLEWARE

@classmethod
def post_setup(cls):

super(LocalEnv, cls).post_setup()

cls.INSTALLED_APPS.extend([
"django_extensions",
"debug_toolbar",

])

As you can see we define a new main urls.py file that will inherit from the base main one and add some custom urls.
Let’s create it to project/localurls.py:

from django.urls import include, path

from project.urls import urlpatterns

urlpatterns = [
path('__debug__/', include('debug_toolbar.urls')),

] + urlpatterns

Alike the local settings file, this file must never be commited to the repository.

18 Chapter 4. Summary

cookiecutter-bireli, Release 0.3.5

4.5.4 Developing a new application

A Makefile task exists to help you to quickly start a new application into your project, just use:

make new-app

It will prompt you for a full title that will be used to build proper Python names (using slugify) and generate everything
(composer application module, Django application module, etc..).

Once done the command outputs a resume and a some help to enable your new application.

4.5.5 Add a new third party application

To add a new package for an already enabled application just put it in application requirement file and configure it in
its settings file. For example, a CMS plugin should live in the CMS application settings.

But sometime a third party application may be shared by many applications, in this case it will needs its own composer
application module.

You may copy an other application module and edit it or use the command from Developing a new application and just
keep the composer application folder.

4.5.6 Environment Requirements

Environment requirements are divided into multiple files because each environment may not use everything and so
does not install everything.

Warning: Don’t edit these files and prefer to add your requirements through a composer application to keep project
well structured.

composer.txt
This is for the composer requirement itself which is appart from the backend base requirements.

It is required by every environment.

base_template.txt
This is a template used by composer to generate again the base requirements file, do not edit it.

It is not required directly by any environment.

base.txt
This is the base project requirements. Don’t write anything in it since it generated from composer, all you changes
will be lost definitively.

It is required by every environment.

development.txt
This is for requirements used to run test and other quality check.

It is required by environments that need to run tests and quality check.

production.txt
This is for requirements used to serve project, specify a proper SGBD driver, etc..

It is only required by all “non-local” environments that need to serve and run project.

4.5. Backend 19

cookiecutter-bireli, Release 0.3.5

codestyle.txt
This is extra requirements in local environment to check and apply linters on code.

It is not required by any environment. However it is installed in local environment.

toolbox.txt
This is extra requirements in local environment for some common helpful tools for debugging.

It is not required by any environment. However it is installed in local environment.

Note: Project does not include configuration needed by extra requirements, especially the Django ones. You will need
to enable and configure them through your Local settings.

4.6 Frontend

4.6.1 Frontend base dependencies

• Node: >=18.0.0

• Npm: >=8.0.0

• Bootstrap: 5.2.0

• Webpack: ^5.50.0

Asset management

Frontend assets are managed with Webpack and Django is aware of them through django-webpack-loader so you can
load them from templates.

Compiled CSS from Sass sources are not managed from Webpack since there is currently no Sass compiler that are
properly usable. So these CSS files are just loaded as simple static files.

Webdesign integration

Layout stylesheets (CSS) are built from Sass sources.

It is not allowed to use inline styles in templates and no scoped style from Javascript interfaces. The only source of
truth for layout stylesheets are the Sass sources.

The build from Sass to CSS is performed from the frontend stack with node-sass. We still use node-sass because it’s
still the fastest compiler in Javascript.

Default project frontend use Bootstrap framework and all templates are made with its components.

20 Chapter 4. Summary

https://webpack.js.org/
https://github.com/django-webpack/django-webpack-loader
https://sass-lang.com/documentation/
https://github.com/sass/node-sass
https://github.com/sass/node-sass
https://getbootstrap.com/

cookiecutter-bireli, Release 0.3.5

Javascript interface

Default Javascript sources shipped in a project are basic and just load the Bootstrap components. Code sources are to
be done for ES6 and jQuery is still available.

Logo and favicon

A project is generated with a default logo and favicon that you should change to fit to your project brand design.

Note than favicon is configured using a site manifest to cover multiple devices behaviors, you may build a new full site
manifest from online tool like Favicon Generator (recommended).

4.7 Development

4.7.1 Install for development

First ensure you have pip, virtualenv packages installed and GNU make available on your system. Then type:

git clone https://github.com/sveetch/cookiecutter-bireli.git
cd cookiecutter-bireli
make install

Warning: You will need to keep your install up to date yourself opposed to the direct repository usage which
always try to use the latest version.

Once installed you can create shortcut with a bash alias in your .bash_aliases:

alias cookdjango='/home/your/install/cookiecutter-bireli/.venv/bin/cookiecutter /home/
→˓your/install/cookiecutter-bireli'

So you will just have to execute following command to create a new project:

cookdjango

Contribution

Every feature proposal and bug fixes must pass through a Pull request.

Note: To avoid managing main components versions through multiple files and miss some inconsistencies, main
component versions are stored through private variables in cookiecutter template configuration file cookiecutter.
json.

These variables are strings that must be valid requirement versions for Python package, except for the frontend compo-
nents that must be valid versions for NPM.

4.7. Development 21

https://realfavicongenerator.net/
https://pip.pypa.io
https://virtualenv.pypa.io

cookiecutter-bireli, Release 0.3.5

4.8 History

4.8.1 Version 0.3.5 - 2023/04/28

• Added new applications in composer repository:

– Added Lotus;

– Added Cmsplugin-blocks;

– Added Taggit;

– Added DAL;

• Added a CMS toolbar for a shortcut link to Lotus articles, categories, Fobi, Taggit tags and Snippets;

• Added tasks for Black, Stylelint and djLint;

• Fixed issues from Stylelint on Sass sources;

• Fixed issues from djLint on templates;

4.8.2 Version 0.3.4 - 2023/03/28

• Upgraded to Python>=3.10;

• Removed usage of deprecated setuptools private API from project/__init__.py to get the project version.
Instead it uses tomli to parse the project TOML file;

• Added migrations task to create all pending migrations from project applications;

• Added a common pagination.html template;

• Continued to improve documentation;

• Fixed urls.py from composer application which loaded url in the wrong order;

• Improved context process site_metas to include the project release version and included the version in skeleton
into meta tag generator;

• Disabled fobi form template with Bootstrap5 to turn back to the simple theme since we cannot implement the
Bootstrap5 form errors with fobi;

• Override startapp command with a new one which use bireli-newapp;

• Added more useful dev requirements files:

– codestyle to apply and maintain codestyle quality;

– toolbox for some debugging;

• Added Bireli logo as default project logo and favicon;

• Continued to improve documentation;

22 Chapter 4. Summary

https://github.com/sveetch/cookiecutter-bireli-newapp

cookiecutter-bireli, Release 0.3.5

4.8.3 Version 0.3.3 - 2023/02/06

• Changed check-migrations task so it does not scan anymore for packaged app migrations, only the project
ones from django-apps. This is to overcome issues CMS plugin apps that don’t have yet a proper Django>=4.0
support, see issue #21 for details;

• Test environment settings no longer inherit from Development, instead some of Development settings have been
copied to the Test settings;

• Fixed Composer check command which wrongly used resolver in lazy mode (leading to wrong order in output);

• Added feature for the optional local environment settings file localsettings.py;

• Moved DOTENV setting to DjangoPaths and make it conditional (to avoid confusing exception about Django
apps and models) to Dotenv file existence;

• Fixed application settings and their .env sample. Now every setting that can be overwritten from Dotenv will
use the default prefix DJANGO_ such as a setting FOO is expected to be named DJANGO_FOO in Dotenv file;

• Fixed every applications settings files to explictely define super() arguments since it use cls and not self in
setup methods;

4.8.4 Version 0.3.2 - 2023/01/30

• Started this history changelog;

• Started documentation;

• Added missing project directory project/locale and filled it with en and fr locale directories;

• Added missing locale directories en and fr with their PO;

• Fixed settings to remove translation for language names, they must always stand in their own language;

4.8. History 23

https://github.com/sveetch/cookiecutter-bireli/issues/21

	Features
	Dependencies
	Links
	Summary
	Create a new project
	Options
	Result

	Project install
	System requirements
	Basic requirements
	Optional requirements

	Local deployment
	Initial data
	Upgrades
	Cleaning
	Production deployment

	Makefile
	Tasks

	Architecture
	Composition
	Details

	Structure

	Backend
	Backend base dependencies
	Database
	Settings
	Local settings
	Basic
	Advanced

	Developing a new application
	Add a new third party application
	Environment Requirements

	Frontend
	Frontend base dependencies
	Asset management
	Webdesign integration
	Javascript interface
	Logo and favicon

	Development
	Install for development
	Contribution

	History
	Version 0.3.5 - 2023/04/28
	Version 0.3.4 - 2023/03/28
	Version 0.3.3 - 2023/02/06
	Version 0.3.2 - 2023/01/30

